Bcl-2 maintains the mitochondrial membrane potential, but fails to affect production of reactive oxygen species and endoplasmic reticulum stress, in sodium palmitate-induced β-cell death
نویسندگان
چکیده
BACKGROUND Sodium palmitate causes apoptosis of β-cells, and the anti-apoptotic protein Bcl-2 has been shown to counteract this event. However, the exact mechanisms that underlie palmitate-induced pancreatic β-cell apoptosis and through which pathway Bcl-2 executes the protective effect are still unclear. METHODS A stable Bcl-2-overexpressing RINm5F cell clone (BMG) and its negative control (B45) were exposed to palmitate for up to 8 h, and cell viability, mitochondrial membrane potential (Δψm), reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress, and NF-κB activation were studied in time course experiments. RESULTS Palmitate exposure for 8 h resulted in increased cell death rates, and this event was partially counteracted by Bcl-2. Bcl-2 overexpression promoted in parallel also a delayed induction of GADD153/CHOP and a weaker phosphorylation of BimEL in palmitate-exposed cells. At earlier time points (2-4 h) palmitate exposure resulted in increased generation of ROS, a decrease in mitochondrial membrane potential (Δψm), and a modest increase in the phosphorylation of eIF2α and IRE1α. BMG cells produced similar amounts of ROS and displayed the same eIF2α and IRE1α phosphorylation rates as B45 cells. However, the palmitate-induced dissipation of Δψm was partially counteracted by Bcl-2. In addition, basal NF-κB activity was increased in BMG cells. CONCLUSIONS Our results indicate that Bcl-2 counteracts palmitate-induced β-cell death by maintaining mitochondrial membrane integrity and augmenting NF-κB activity, but not by affecting ROS production and ER stress.
منابع مشابه
Rhein induced apoptosis through the endoplasmic reticulum stress, caspase- and mitochondria-dependent pathways in SCC-4 human tongue squamous cancer cells.
Rhein, an anthraquinone compound, can be found in the rhizome of rhubarb, a traditional Chinese medicine herb showing antitumor activity. In this study, it was observed that rhein induced S-phase arrest through the inhibition of p53, cyclin A and E and it induced apoptosis through the endoplasmic reticulum stress by the production of reactive oxygen species (ROS) and Ca2+ release, mitochondrial...
متن کامل4'-Hydroxycinnamaldehyde from Alpinia galanga (Linn.) induces human leukemic cell apoptosis via mitochondrial and endoplasmic reticulum stress pathways.
Rhizomes of Alpinia galanga (Linn.) or 'Kha' in Thai are used in food and as folk medicine in South and Southeast Asia. The aims of this study were to identify the mechanism of cell death of human leukemic HL-60 and U937 cells induced by 4'-hydroxycinnamaldehyde (4'-HCA) isolated from A. galanga. 4'-HCA was cytotoxic to both cell lines in a dose-dependent manner (p<0.05) as demonstrated by MTT ...
متن کاملBerberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction.
Berberine has a wide range of biochemical and pharmacologic effects, including antitumor activity, but the mechanisms involved in berberine-induced apoptosis remain unclear. The purpose of the present study was to investigate the changes in oxidative stress and endoplasmic reticulum (ER)-related molecules, which are closely associated with cell death-signaling transduction pathways, in human gl...
متن کاملHydrogen sulphide protects mouse pancreatic β-cells from cell death induced by oxidative stress, but not by endoplasmic reticulum stress.
BACKGROUND AND PURPOSE Hydrogen sulphide (H₂S), a potentially toxic gas, is also involved in the neuroprotection, neuromodulation, cardioprotection, vasodilatation and the regulation of inflammatory response and insulin secretion. We have recently reported that H₂S suppresses pancreatic β-cell apoptosis induced by long-term exposure to high glucose. Here we examined the protective effects of so...
متن کاملProtective effect of bioactive compounds from Echinophora cinerea against cisplatin-induced oxidative stress and apoptosis in the PC12 cell line
Objective(s): The present study aims to evaluate the protective effect of the compounds isolated from Echinophora cinerea (E. cinerea) against oxidative stress and apoptosis induced by cisplatin (CIS) in PC12 cells. Materials and Methods: Six compounds were isolated as quercetrin-3-O-β-D-glucopyranoside (QUE), osthol (OST), verbenone-5-O-β-D-glycopyranoside (VER), Isoimperatorin (ISO), kaempfer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 119 شماره
صفحات -
تاریخ انتشار 2014